# Design Techniques for VHF \& UHF LNAs 

by

Al Ward<br>W5LUA

2003 Central States VHF Society Conference Tulsa, Oklahoma

## The VHF and L-Band LNA Design Challenge

Today's transistors have very low noise figures and very high gain
High gain contributes to stability problems and decreased input intercept point

Minimum input VSWR and minimum noise figure will generally not occur simultaneously with same matching network. Use of source inductance may help but too much may cause instability
Generally S parameters taken down to 500 MHz and noise parameters taken down to 2 GHz Extrapolation required for VHF LNA design
ATF-3X143 Series of PHEMTs

PHEMT technology for higher performance especially at cellular and PCS frequencies

Small plastic surface mount packaging
Various gate widths 400u / 800u / 1600 u
At lower frequencies, l.e. 2 GHz or less, larger gate widths offer lower gain and lower impedances which can contribute to improved stability and lower matching circuit losses

ATF-36077-200 u


ATF-35143 - 400

u ATF-34143 800 u ATF-33143
-1600 u
Agilent Technologies

## What about S-parameters?!??!

A three-terminal two-port, such as the FET shown, has four Sparameters.
$\mathrm{S}_{\mathrm{nn}}=$ voltage reflection
coefficient, both amplitude and phase relative to $50 \Omega$ source impedance
$\mathrm{S}_{21}$ and $\mathrm{S}_{12}$ are commonly displayed on a polar chart.

$$
\begin{aligned}
& S_{11}=\Gamma_{\text {input }} \text { displayed on Smith } \\
& \text { chart }
\end{aligned}
$$

$\mathbf{S}_{22}=\Gamma_{\text {output }}$ displayed on Smith chart

Polar chart


Smith chart


## What about Noise Parameters?!??!

$\Gamma_{0}$ (Gamma Opt) is the reflection coefficient of the source impedance presented to the device that allows the device to produce its' $\mathbf{f}_{\text {min }}$

Matching circuit losses often limit the ability of the amplifier to achieve a noise figure equivalent to device $f_{\text {min }}$
$\Gamma_{\mathrm{o}}$ not necessarily equal to $\mathbf{S 1 1 *}$ which means noise match is not equivalent to a gain match
$\mathrm{R}_{\mathrm{n}}$ (Noise Resistance) is used to calculate the device's sensitivity in noise figure to changes in source impedance, $r_{n}$ is normalized to $50 \Omega$.


For minimum NF, $\Gamma_{\mathrm{in}}=\Gamma_{\mathrm{o}}$ For maximum gain, $\Gamma_{\mathrm{in}}=\mathrm{S} 11^{*}$

## Converting Reflection Coefficients to Impedance with the Smith Chart



## The Smith Chart with both Charts Superimposed

Impedance coordinates are shown -- a similar chart exists for admittance coordinates, where
$Z=1 / Y$

The green polar coordinates are usually left out for clarity. The user substitutes a compass and
 straightedge.

## The Impedance/Admittance Smith

## chart

When the admittance chart (green coordinates) is overlaid onto the impedance chart (red coordinates), a very useful computing tool is generated.

It chiefly appeals to old timers who are familiar with its use.


## Other measures of input characteristics

VSWR = Voltage Standing Wave Ratio

$$
\mathrm{VSWR}=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

Return Loss

$$
\mathrm{RL}=10 \log \mid \Gamma^{2}
$$

Mismatch Loss
$M L=10 \operatorname{LOG}\left(1-\Gamma^{2}\right)$

## Input Impedance Match



Match to Гopt for minimum noise figure

Noise degrades in circular contours as match moves away from Гopt

Degree of noise degradation is dependent on Rn , the noise resistance

Most amateur applications aim for minimum noise figure and accept input VSWR

## Simultaneous Input VSWR and Noise Match

 inductance rotates Гopt towards $\mathrm{S}_{11}{ }^{\text {* }}$

Emitter or source inductance is series feedback which effects gain and stability

Its' effect must be analyzed over as a wide a bandwidth as the device has gain

## Output Impedance Match



$$
\Gamma_{\mathrm{L}}=\left[\mathrm{S}_{22}+\frac{\mathrm{S}_{12} \mathrm{~S}_{21} \Gamma \mathrm{o}}{1-\mathrm{S}_{11} \Gamma \underline{\mathrm{o}}}\right]^{*}
$$

$\mathrm{S}_{22}{ }^{\prime *}=\Gamma_{\mathrm{L}}$ is the reflection
coefficient of the output matching network with input terminated in Гopt, not $50 \Omega$
Match to $S_{22}{ }^{\prime *}=\Gamma_{L}$ for best gain/output VSWR

LNA may not be unconditionally stable when matched for best output VSWR - Some resistive loading may be required to reduce gain to improve stability
Best output VSWR does not necessarily guarantee best P1dB and IP3.

## Using AppCAD for Circuit Analysis



Available for free download at
http://www.semiconductor.agilent.com http://www.hp.woodshot.com/

## ATF-36077 vs ATF-33143 Stability Factors vs Frequency



Agilent Technologies
unconditional stabilit

ATF-36077-K < 1 at all frequencies below 10 GHz

ATF-33143-K < 1 only below 4.2 GHz , making the device less sensitive to source grounding better for VHF LNAs

$$
\begin{gathered}
K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|D|^{2}}{2\left|S_{12}\right|\left|S_{21}\right|} \\
D=S_{11} S_{22}-S_{12} S_{21}
\end{gathered}
$$

Stability Factor K calculated from $\mathbf{S}$ parameters at each frequency, $\mathrm{K}>1$ for

## ATF-36077 vs ATF-33143 S21 vs MAG vs MSG



Agilent Technologies

## ATF-36077 1.5 V 10 mA Гo vs S11* vs Гms



## Agilent Technologies

## ATF-33143 3V 60 mA Гo vs S11* vs Гms



## Using AppCAD to calculate equivalent circuit that presents Гo to the ATF-33143

\section*{| KK AppCAD - [Complex Math Calculator] | $-\|\square\| \times 1$ |
| :--- | :--- |
| Fle Options Help |  | <br> File Options Help}

Complex Math Calculator for RF Circuits
Rectangular: Real Imaginary



Click


1. Input Y on Row\#1
2. Select Frequency
3. Press for /equivalent parallel gircuit
4. Input matching network must transform $50 \Omega$ source impedance to approximately $200 \Omega$ in parallel with 921 nH for the ATF-33143 to produce best NF at 144 MHz

Го expressed as an admittance
Agilent Technologies

## Typical LNA Input Circuits



Low pass network


Band pass network


High pass network

All networks can provide the necessary impedance step-up transformation

Low pass network generally not used at 222 MHz and lower due to poor rejection of out-of-band signals

## Integrating Matching Networks and Bias Decoupling Networks



Optimize matching components for in-band performance-NF, Gain, VSWR, Stability
Optimize remaining elements in bias decoupling networks for best out-of-band stability

R"termination" (0-27 $)$ provides overall stability R"LFtermination" (50-100 provides stability at F/2 and lower frequency

## Contributions to Source Inductance



1. Lead length from edge of transistor package to bypass cap or plated through hole adds inductance
2. Use of a source resistor bypass capacitor can alter circuit stability 3. The inductance associated with the bypass capacitor and the equivalent inductance due to the thickness of printed circuit board

## Effect of Source Inductance on Amplifier Performance



Minimal source inductance


Moderate but acceptable source inductance


Excessive and unacceptable amount of source inductance

Source inductance is a convenient way to improve S11 and reduce gain which will improve IIP3 however.... Excessive source inductance causes out-of-band gain peaking and resultant instabilities and oscillations

## Low Noise Amplifier for 144 MHz using the ATF-33143 PHEMT designed by WD5AGO

## ATF-33143 S Parameters with Iow frequency prediction

!ATF-33143
! s-parameters at Vds=3V, Id=60mA. Last updated 25/02/02 AR.
!Data below 500 MHz extrapolated based on non-linear model prediction
! Freq(GHz)Mag
\# ghz s ma r 50

| 0.1 | 0.97 | -15 | 16.5 | 165.0 | 0.010 | 80.0 | 0.07 | -106 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.3 | 0.93 | -44 | 15.3 | 146 | 0.027 | 67 | 0.18 | -114 |
| 0.5 | 0.87 | -75.3 | 14.06 | 133 | 0.039 | 55.1 | 0.27 | -124.2 |
| 0.8 | 0.78 | -114.7 | 10.26 | 110 | 0.055 | 42.6 | 0.36 | -153.9 |
| 1 | 0.77 | -122.3 | 9.56 | 105.5 | 0.057 | 40.5 | 0.37 | -158.8 |
| 1.5 | 0.74 | -151.6 | 6.91 | 87.6 | 0.068 | 33.5 | 0.41 | -178.7 |
| 1.8 | 0.73 | -164.6 | 5.87 | 79.3 | 0.072 | 30.8 | 0.43 | 172.6 |
| 2 | 0.73 | -171.8 | 5.3 | 74.4 | 0.075 | 29 | 0.44 | 167.5 |
| 2.5 | 0.73 | 171 | 4.27 | 62.8 | 0.082 | 25.1 | 0.47 | 158.5 |
| 3 | 0.74 | 158.1 | 3.54 | 53.1 | 0.089 | 21.4 | 0.5 | 151 |
| 4 | 0.75 | 136.4 | 2.68 | 35.4 | 0.103 | 13.2 | 0.52 | 138.6 |
| 5 | 0.75 | 116.9 | 2.19 | 17.7 | 0.117 | 2.8 | 0.52 | 124.4 |
| 6 | 0.77 | 97.8 | 1.84 | -0.6 | 0.128 | -9.7 | 0.53 | 107.8 |
| 7 | 0.79 | 79.9 | 1.53 | -18.6 | 0.135 | -23.2 | 0.56 | 90.2 |
| 8 | 0.82 | 64.5 | 1.3 | -34.4 | 0.137 | -34.6 | 0.59 | 74.7 |
| 9 | 0.83 | 50.4 | 1.13 | -48.5 | 0.141 | -44.5 | 0.62 | 62.7 |
| 10 | 0.86 | 36.4 | 1.02 | -63.5 | 0.15 | -56.2 | 0.65 | 50.9 |
| 11 | 0.88 | 21.6 | 0.9 | -79.5 | 0.151 | -69.4 | 0.68 | 37.4 |
| 12 | 0.9 | 7.3 | 0.78 | -95.1 | 0.146 | -82.1 | 0.71 | 21.4 |
| 13 | 0.91 | -5 | -9.66 | -109.7 | 0.137 | -94 | 0.74 | 5.8 |
| 14 | 0.91 | -15.5 | 0.57 | -121.4 | 0.13 | -102.7 | 0.77 | -6.1 |
| 15 | 0.92 | -27.5 | 0.51 | -133.9 | 0.128 | -112.4 | 0.8 | -15.8 |
| 16 | 0.93 | -40.6 | 0.46 | -146.6 | 0.13 | -123 | 0.82 | -25.8 |
| 17 | 0.94 | -52.3 | 0.42 | -160.3 | 0.127 | -135.3 | 0.82 | -37.9 |
| 18 | 0.93 | -61.4 | 0.36 | -170.9 | 0.117 | -144 | 0.84 | -49.7 |

Agilent Technologies

## ATF-33143 Noise Parameters with low frequency prediction

| ! Freq | FMIN |  | GAMMA OPT | Rn |
| :---: | :---: | :---: | :---: | :---: |
| ! (GHz) | (dB) Mag | Ang 50 Ohm |  |  |
| 0.1 | 0.23 | 0.62 | 5 | 0.060 |
| 0.2 | 0.23 | 0.58 | 9 | 0.059 |
| 0.3 | 0.23 | 0.53 | 15 | 0.058 |
| 0.4 | 0.23 | 0.48 | 19 | 0.058 |
| 0.5 | 0.23 | 0.43 | 29.20 | 0.06 |
| 0.9 | 0.28 | 0.35 | 42.40 | 0.06 |
| 1.0 | 0.29 | 0.35 | 45.00 | 0.07 |
| 1.5 | 0.34 | 0.26 | 68.80 | 0.06 |
| 1.8 | 0.34 | 0.23 | 93.30 | 0.04 |
| 2.0 | 0.38 | 0.22 | 109.70 | 0.05 |
| 2.5 | 0.52 | 0.25 | 150.60 | 0.03 |
| 3.0 | 0.53 | 0.30 | 167.50 | 0.03 |
| 4.0 | 0.61 | 0.39 | -160.30 | 0.04 |
| 5.0 | 0.68 | 0.47 | -134.70 | 0.06 |
| 6.0 | 0.83 | 0.52 | -112.10 | 0.11 |
| 7.0 | 0.91 | 0.58 | -89.70 | 0.22 |
| 8.0 | 1.04 | 0.61 | -71.50 | 0.36 |
| 9.0 | 1.09 | 0.66 | -54.80 | 0.56 |
| 10.0 | 1.13 | 0.70 | -41.40 | 0.73 |

## Schematic for the WD5AGO ATF33143144 MHz LNA



| $\mathrm{C} 1, \mathrm{C} 2$ | 0.8 to 10 pF Johansen variable capacitor |
| :--- | :--- |
| $\mathrm{C} 3, \mathrm{C} 4$ | 1000 pF chip capacitor |
| C5 | 100 pF chip capacitor |
| C6 | 0.1 uF chip capacitor |
| L1 | 5 Turns \#14 guage $0.4 "$ dia. c to c spaced wire diameter tap 1 T from top <br> enclosed in a $0.75 "$ " by 1" brass enclosure |
| L2 | $0.6 "$ length wire 0.030" diameter |
| L3,L4 | 0.050 " wide by 0.080" length etch between Q1 and C3,C4 |
| L5 | 47 nH chip inductor |
| Q1 | Agilent ATF-33143 PHEMT |
| R1,R2 | $15 \Omega$ chip resistor |
| R3 | $27 \Omega$ chip resistor |
| R4 | $330 \Omega$ chip resistor |
| R5 | $50 \Omega$ chip resistor |

## ADS Simulation for the WD5AGO ATF-33143 144 MHz LNA



## Chip Capacitor Parasitics - A

 First Approximation

A capacitor shunted across a microstripline exhibits a first order series resonance at a frequency where the capacitance C and its' associated parasitic lead inductance Lp resonate. The effect is shown as a reduction in S21 at frequency $F$ OR

Lp can then be easily calculated by $\omega=2 \pi F=1 /$ SQRT (LC)

## Chip Capacitor Parasitics - A First Approximation



Sample data

Capacitors are ATC 0.050" square ceramic
Parasitic inductance should be included in circuit designs for best correlation between simulation and actual bench performance

## Chip Inductor Parasitics - A First Approximation




An inductor inserted in series with a microstripline exhibits a first order parallel resonance at a frequency where the inductor L and its' associated shunt parasitic capacitance Cp resonate. The effect is shown as a reduction in S21 at frequency $F$ OR
Lp can then be easily calculated by $\omega=2 \pi F=1 /$ SQRT (LC)

## Chip Inductor Parasitics - A First Approximation

| Inductor $(\mathrm{nH})$ | Associated shunt capacitance Cp |
| :---: | :---: |
| 4 | 0.048 |
| 10 | 0.076 |
| 27 | 0.170 |
| 560 | 0.128 |

Sample data

Inductors are Coilcraft 1008CS style
Parasitic shunt capacitance should be included in circuit designs for best correlation between simulation and actual bench performance

## Effect of paralleling two capacitors of different values



Paralleling 2 caps of equal C and $L$ cuts $Z$ in half at all freq

Paralleling 22 pF cap with 1000 pF cap may lower $Z$ at 1.2 GHz , however, Z at 0.8 GHz increases dramatically



## ADS Simulated Performance for the WD5AGO ATF-33143 144 MHz LNA


freq. $M H z$


Measured
S21=27dB
S11 $=-4.4 \mathrm{~dB}$
S22=-11 dB
$\mathrm{NF}=0.27 \mathrm{~dB}$


Input Stability Circle Output Stability Circle

## Low Noise Amplifier for 432 MHz using the ATF-33143 PHEMT designed by WD5AGO

## WD5AGO ATF-33143 432 MHz LNA



| C1 | 10 pF chip capacitor |
| :--- | :--- |
| C 2 | 50 pF chip capacitor |
| $\mathrm{C} 3, \mathrm{C} 4$ | 1000 pF chip capacitor |
| C5 | 0.01 uF chip capacitor |
| L1 | 380 nH chip inductor |
| L2 | Airwound inductor 4 turns \#24 guage wire $0.175^{\prime \prime} \mathrm{ID}, 0.4^{4 \prime}$ length |
| L3,L4 | Microstrip 0.020" wide by $0.050 "$ in length |
| L5 | 100 nH chip inductor |
| Q1 | Agilent ATF- 33143 PHEMT |
| R1 | $51 \Omega$ chip resistor |
| R2,R3 | $10 \Omega$ chip resistor |
| R4 | $20 \Omega$ chip resistor - adjust for stability |
| R5 | $50 \Omega$ chip resistor |
| R6 | $680 \Omega$ chip resistor |

## ADS Simulation of the WD5AGO ATF-33143 432 MHz LNA



## ADS Simulated Performance for the WD5AGO ATF-33143 432 MHz LNA



Measured
S21 $=19 \mathrm{~dB}$
S11 = -9 dB
S22=-10dB
$\mathrm{NF}=0.28 \mathrm{~dB}$

## How Are Third Order Products Produced?



Frequency in GHz

## Plotting the Third Order Response



Agilent Technologies

## Cascade IP3 Calculation



## Agilent Technologies

## Output Intercept Point Comparison

| Frequency | Manufacturer | Device | OIP3 |
| :--- | :--- | :--- | :--- |
| 144 MHz | HB | 3N211 | +18 dBm |
|  | Janel 144 PB | 3N204 | +19.5 dBm |
|  | WD5AGO | ATF-33143 | +22.5 dBm |
|  | ARR | 3N204 | +4 dBm |
|  | HB | NE24483 | +18 dBm |
|  | WD5AGO | ATF-33143 | +22.5 dBm |

## Using AppCAD to Calculate Bias Resistors



## Summary

The older ceramic packaged FETs are being replaced by smaller surface mount plastic packaged devices.
Designing a stable low noise amplifier at VHF and UHF is certainly a challenge
Today's LNA noise figures are limited more by circuit losses than device noise figures

## Try AppCAD! <br> It's Free!



Thank You!

