Design Techniques for VHF & UHF LNAs

by Al Ward W5LUA

2003 Central States VHF Society Conference Tulsa, Oklahoma

The VHF and L-Band LNA Design Challenge

Today's transistors have very low noise figures and very high gain

High gain contributes to stability problems and decreased input intercept point

Minimum input VSWR and minimum noise figure will generally not occur simultaneously with same matching network. Use of source inductance may help but too much may cause instability

Generally S parameters taken down to 500 MHz and noise parameters taken down to 2 GHz -Extrapolation required for VHF LNA design

ATF-3X143 Series of PHEMTs

- PHEMT technology for higher performance especially at cellular and PCS frequencies
- Small plastic surface mount packaging
- Various gate widths 400u / 800u / 1600 u
- At lower frequencies, I.e. 2 GHz or less, larger gate widths offer lower gain and lower impedances which can contribute to improved stability and lower matching circuit losses

ATF-36077 – 200 u

G S 360 S D

ATF-35143 - 400 u ATF-34143 -800 u ATF-33143 - 1600 u

Agilent Technologies

What about S-parameters?!??!

A three-terminal two-port, such as the FET shown, has four Sparameters.

 S_{nn} = voltage reflection coefficient, both amplitude and phase relative to 50 W source impedance

S₂₁ and S₁₂ are commonly displayed on a polar chart.

S₁₁ = G_{input} displayed on Smith chart

S₂₂ = G_{output} displayed on Smith chart

What about Noise Parameters?!??!

 G_o (Gamma Opt) is the reflection coefficient of the source impedance presented to the device that allows the device to produce its' f_{min}

Matching circuit losses often limit the ability of the amplifier to achieve a noise figure equivalent to device f_{min}

G_o not necessarily equal to S11^{*} which means noise match is not equivalent to a gain match

 R_n (Noise Resistance) is used to calculate the device's sensitivity in noise figure to changes in source impedance, r_n is normalized to 50 W.

For minimum NF, $\Gamma_{in} = \Gamma_{o}$ For maximum gain, $\Gamma_{in} = S11^*$

Converting Reflection Coefficients to Impedance with the Smith Chart

The Smith Chart with both Charts Superimposed

Impedance coordinates are shown -- a similar chart exists for admittance coordinates, where

$$\mathsf{Z}=\mathsf{1}/\mathsf{Y}$$

The green polar coordinates are usually left out for clarity. The user substitutes a compass and straightedge.

The Impedance/Admittance Smith chart

When the admittance chart (green coordinates) is overlaid onto the impedance chart (red coordinates), a very useful computing tool is generated.

It chiefly appeals to old timers who are familiar with its use.

Other measures of input characteristics

VSWR = Voltage Standing Wave Ratio

$$\mathsf{VSWR} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Return Loss

$$RL = 10 \log |\Gamma|^2$$

Mismatch Loss

$$ML = 10 LOG (1 - G^2)$$

Input Impedance Match

Match to Gopt for minimum noise figure

Noise degrades in circular contours as match moves away from **G**opt

Degree of noise degradation is dependent on Rn, the noise resistance

Most amateur applications aim for minimum noise figure and accept input VSWR

Simultaneous Input VSWR and Noise Match

new S11* Adding emitter or source inductance rotates Gopt towards S₁₁*

> Emitter or source inductance is series feedback which effects gain and stability

Its' effect must be analyzed over as a wide a bandwidth as the device has gain

Output Impedance Match

$$\Gamma_{\rm L} = \left[S_{22} + S_{12} S_{21} \Gamma_{\rm O} \\ 1 - S_{11} \Gamma_{\rm O} \right]^{*}$$

 S_{22} ^{'*} = G_L is the reflection coefficient of the output matching network with input terminated in Gopt, not 50W

Match to S_{22} ^{'*} = G_L for best gain/output VSWR

LNA may not be unconditionally stable when matched for best output VSWR - Some resistive loading may be required to reduce gain to improve stability

Best output VSWR does not necessarily guarantee best P1dB and IP3.

Using AppCAD for Circuit Analysis

Available for free download at http://www.semiconductor.agilent.com http://www.hp.woodshot.com/

ATF-36077 vs ATF-33143 Stability Factors vs Frequency

Stability Factor K calculated from S parameters at each frequency, K>1 for unconditional stability

ATF-36077 – K < 1 at all frequencies below 10 GHz

ATF-33143 – K < 1 only below 4.2 GHz, making the device less sensitive to source grounding – better for VHF LNAs $K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |D|^2}{2|S_{12}||S_{21}|}$

 $D = S_{11}S_{22} - S_{12}S_{21}$

ATF-36077 vs ATF-33143 S21 vs MAG vs MSG

ATF-36077 1.5 V 10 mA Go vs S11* vs Gms

ATF-33143 3V 60 mA Go vs S11* vs Gms

Using AppCAD to calculate equivalent circuit that presents Go to the ATF-33143

Go expressed as an admittance

Typical LNA Input Circuits

Low pass network

Band pass network

High pass network

All networks can provide the necessary impedance step-up transformation

Low pass network generally not used at 222 MHz and lower due to poor rejection of out-of-band signals

Integrating Matching Networks and Bias Decoupling Networks

Optimize matching components for in-band performance-NF, Gain, VSWR, Stability

Optimize remaining elements in bias decoupling networks for best out-of-band stability R"termination" $(0-27\Omega)$ provides overall stability R"LFtermination" $(50-100\Omega)$ provides stability at F/2 and lower frequency

Retune in-band performance if necessary Agilent Technologies

Page 20

Contributions to Source Inductance

1. Lead length from edge of transistor package to bypass cap or plated through hole adds inductance 2. Use of a source resistor bypass capacitor can alter circuit stability 3. The inductance associated with the bypass capacitor and the equivalent inductance due to the thickness of printed circuit board

Effect of Source Inductance on Amplifier Performance

Minimal source inductance

Moderate but acceptable source inductance

Excessive and unacceptable amount of source inductance

Source inductance is a convenient way to improve S11 and reduce gain which will improve IIP3 however.... Excessive source inductance causes out-of-band gain peaking and resultant instabilities and oscillations

Low Noise Amplifier for 144 MHz using the **ATF-33143 PHEMT** designed by WD5AGO

ATF-33143 S Parameters with low frequency prediction

!ATF-33143

!s-parameters at Vds=3V, Id=60mA. Last updated 25/02/02 AR.

!Data below 500 MHz extrapolated based on non-linear model prediction

	Freq(GHz)Mag	-	Mag	Ang	Mag	Ang	Mag	Ang
#	ghz s ma r 50							
	.1 0.97	-15	16.5	165.0	0.010	80.0	0.07	-106
0.		-44	15.3	146	0.027	67	0.18	-114
0.		-75.3	14.06	133	0.039	55.1	0.27	-124.2
0.	.8 0.78	-114.7	10.26	110	0.055	42.6	0.36	-153.9
1	0.77	-122.3	9.56	105.5	0.057	40.5	0.37	-158.8
1.	.5 0.74	-151.6	6.91	87.6	0.068	33.5	0.41	-178.7
1.	.8 0.73	-164.6	5.87	79.3	0.072	30.8	0.43	172.6
2	0.73	-171.8	5.3	74.4	0.075	29	0.44	167.5
2.	.5 0.73	171	4.27	62.8	0.082	25.1	0.47	158.5
3	0.74	158.1	3.54	53.1	0.089	21.4	0.5	151
4	0.75	136.4	2.68	35.4	0.103	13.2	0.52	138.6
5	0.75	116.9	2.19	17.7	0.117	2.8	0.52	124.4
6	0.77	97.8	1.84	-0.6	0.128	-9.7	0.53	107.8
7	0.79	79.9	1.53	-18.6	0.135	-23.2	0.56	90.2
8	0.82	64.5	1.3	-34.4	0.137	-34.6	0.59	74.7
9	0.83	50.4	1.13	-48.5	0.141	-44.5	0.62	62.7
10	0 0.86	36.4	1.02	-63.5	0.15	-56.2	0.65	50.9
1	1 0.88	21.6	0.9	-79.5	0.151	-69.4	0.68	37.4
12	2 0.9	7.3	0.78	-95.1	0.146	-82.1	0.71	21.4
1.	3 0.91	-5	0.66	-109.7	0.137	-94	0.74	5.8
14	4 0.91	-15.5	0.57	-121.4	0.13	-102.7	0.77	-6.1
1.	5 0.92	-27.5	0.51	-133.9	0.128	-112.4	0.8	-15.8
10	6 0.93	-40.6	0.46	-146.6	0.13	-123	0.82	-25.8
1′	7 0.94	-52.3	0.42	-160.3	0.127	-135.3	0.82	-37.9
18	8 0.93	-61.4	0.36	-170.9	0.117	-144	0.84	-49.7

ATF-33143 Noise Parameters with low frequency prediction

!noise parameters at Vds=3V, Id=60mA					
! Freq	FMIN	T (GAMMA OPT	Rn	
! (GHz)	(dB) Mag	Ang 50 Ohm			
0.1	0.23	0.62	5	0.060	
0.2	0.23	0.58	9	0.059	
0.3	0.23	0.53	15	0.058	
0.4	0.23	0.48	19	0.058	
0.5	0.23	0.43	29.20	0.06	
0.9	0.28	0.35	42.40	0.06	
1.0	0.29	0.35	45.00	0.07	
1.5	0.34	0.26	68.80	0.06	
1.8	0.34	0.23	93.30	0.04	
2.0	0.38	0.22	109.70	0.05	
2.5	0.52	0.25	150.60	0.03	
3.0	0.53	0.30	167.50	0.03	
4.0	0.61	0.39	-160.30	0.04	
5.0	0.68	0.47	-134.70	0.06	
6.0	0.83	0.52	-112.10	0.11	
7.0	0.91	0.58	-89.70	0.22	
8.0	1.04	0.61	-71.50	0.36	
9.0	1.09	0.66	-54.80	0.56	
10.0	1.13	0.70	-41.40	0.73	

Schematic for the WD5AGO ATF-33143 144 MHz LNA

Vds=3V Id=60 mA

C1,C2	0.8 to 10 pF Johansen variable capacitor				
C3,C4	1000 pF chip capacitor				
C5	100 pF chip capacitor				
C6	0.1 uF chip capacitor				
L1	5 Turns #14 guage 0.4" dia. c to c spaced wire diameter tap 1 T from top enclosed in a 0.75" by 1" brass enclosure				
L2	0.6" length wire 0.030" diameter				
L3,L4	0.050" wide by 0.080" length etch between Q1 and C3,C4				
L5	47 nH chip inductor				
Q1	Agilent ATF-33143 PHEMT				
R1,R2	15 Ω chip resistor				
R3	27 Ω chip resistor				
R4	330Ω chip resistor				
R5	50Ω chip resistor				

ADS Simulation for the WD5AGO ATF-33143 144 MHz LNA

A capacitor shunted across a microstripline exhibits a first order series resonance at a frequency where the capacitance C and its' associated parasitic lead inductance Lp resonate. The effect is shown as a reduction in S21 at frequency F OR

Lp can then be easily calculated by w= 2 p F = 1/ SQRT (L C)

Chip Capacitor Parasitics - A First Approximation

C _		Capacitor (pF)	Associated Inductance Lp	
		1	0.71	Sample data
	$\overline{\mathbf{A}}$	8.2	0.78	
LΡ	3	27	0.79	
	I	1000	1.2	

Capacitors are ATC 0.050" square ceramic

Parasitic inductance should be included in circuit designs for best correlation between simulation and actual bench performance

Chip Inductor Parasitics - A First Approximation

An inductor inserted in series with a microstripline exhibits a first order parallel resonance at a frequency where the inductor L and its' associated shunt parasitic capacitance Cp resonate. The effect is shown as a reduction in S21 at frequency F OR

Lp can then be easily calculated by w= 2 p F = 1/SQRT (L C)

Chip Inductor Parasitics - A First Approximation

Inductor (nH)	Associated shunt capacitance Cp	_
4	0.048	- Sample data
10	0.076	
27	0.170	
560	0.128	

Inductors are Coilcraft 1008CS style

Parasitic shunt capacitance should be included in circuit designs for best correlation between simulation and actual bench performance

Effect of paralleling two capacitors of different values

Paralleling 2 caps of equal C and L cuts Z in half at all freq Paralleling 22 pF cap with 1000 pF cap may lower Z at 1.2 GHz, however, Z at 0.8 GHz increases dramatically

Agilent Technologies

ADS Simulated Performance for the WD5AGO ATF-33143 144 MHz LNA

freq, MHz

Measured S21=27 dB S11 = -4.4 dB S22=-11 dB NF=0.27 dB

Indep(our_l_stabelr) (0.000 to 51.000)

Input Stability Circle

Output Stability Circle

Agilent Technologies

Low Noise Amplifier for 432 MHz using the ATF-33143 PHEMT designed by WD5AGO

WD5AGO ATF-33143 432 MHz LNA

C1	10 pF chip capacitor				
C2	50 pF chip capacitor				
-					
C3,C4	1000 pF chip capacitor				
C5	0.01 uF chip capacitor				
L1	380 nH chip inductor				
L2	Airwound inductor 4 turns #24 guage wire 0.175"ID, 0.4" length				
L3,L4	Microstrip 0.020" wide by 0.050" in length				
L5	100 nH chip inductor				
Q1	Agilent ATF-33143 PHEMT				
R1	51 Ω chip resistor				
R2,R3	10Ω chip resistor				
R4	20Ω chip resistor – adjust for stability				
R5	50Ω chip resistor				
R6	680Ω chip resistor				

ADS Simulation of the WD5AGO ATF-33143 432 MHz LNA

ADS Simulated Performance for the WD5AGO ATF-33143 432 MHz LNA

Measured S21=19 dB S11 = -9 dB S22=-10dB NF=0.28dB

How Are Third Order Products Produced?

Plotting the Third Order Response

Cascade IP3 Calculation

Output Intercept Point Comparison

Frequency	Manufacturer	Device	OIP3
144 MHz	HB	3N211	+18 dBm
	Janel 144 PB	3N204	+19.5 dBm
	WD5AGO	ATF-33143	+22.5 dBm
432 MHz	ARR	3N204	+4 dBm
	HB	NE24483	+18 dBm
	WD5AGO	ATF-33143	+22.5 dBm

Using AppCAD to Calculate Bias Resistors - 0 ×

AppCAD - [FET Self Bias]

File Calculate Select Parameters Options Help

The older ceramic packaged FETs are being replaced by smaller surface mount plastic packaged devices.

Designing a stable low noise amplifier at VHF and UHF is certainly a challenge

Today's LNA noise figures are limited more by circuit losses than device noise figures

Try AppCAD! It's Free!

Thank You!

